

Last session

- Approaches to solving MFA systems
- Sensitivity analysis
- Error propagation in MFA system models
- How to present results and uncertainty ranges

Course outline

		8:15 - 9:00 and 9:15 - 10:00		13:15 - 14:00	14:15 - 15:00
Disable	W1 - Sep 12	Introduction to the course and general concepts	All	Exercise	Project
Block I: EW-MFA	W2 - Sep 19	EW – MFA and EW – MFA in different countries	FMC	Exercise	Project
global / national	W3 – Sep 26	EW – MFA in the Swiss context, Urban Metabolism	External Guest – Florian Kohler	Exercise	Project
Hational	W4 - Oct 03	EW – MFA in the Swiss context: Cantons and Circular Economy	FMC	Exercise	Project
	W5 - Oct 10	The Service-Stock-Flows Nexus	FMC	Exercise	Project
	W6 - Oct 17	Dynamic MFA	External Guest – Stefan Pauliuk	Exercise	Project
Block II:	Oct 24	Autumn break			
MFA regional /	W7 - Oct 31	Spatial MFA	FMC	Exercise	Project
urban	W8 - Nov 07	Input-Output Analysis and Material Flow Cost Accounting	External Guest – Vincent Moreau	Exercise	Project
	W9 - Nov 14	MFA and Uncertainty	Frernal guest – an Pauliuk	Exercise	Project
	W10 - Nov 21	Case studies: Waste management in Indonesia / Critical Raw Materials in the Swiss context	GF & FMC	Exercise	Project
Block III:	W11 - Nov 28	Social Metabolism	CRB	Exercise	Project
Social sciences	W12 - Dec 05	Agent-based model	CRB, FMC, MAH, SLC	Past exam	Project
and public	W13 - Dec 12	Group Project Presentation	CRB, FMC, MAH	Project	Project
policy	W14 - Dec 19	Group Project Presentation	CRB, FMC, MAH	Project	Project

Content of lecture

- Examples of MFA application in resource management and sustainability
- Methods for conducting MFA, with unique considerations based on specific issues
 - The energy transition in Switzerland
 - Waste management in Indonesia
- Insights gained from MFA methods that are replicable or provide inspiration for other case studies
- Insights for integrating MFA findings into policy and decision-making

MFA in practice – Applications (recap)

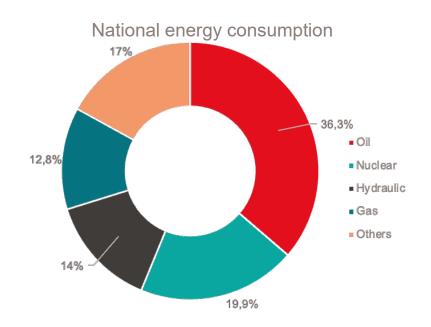
"You can't manage what you can't measure."

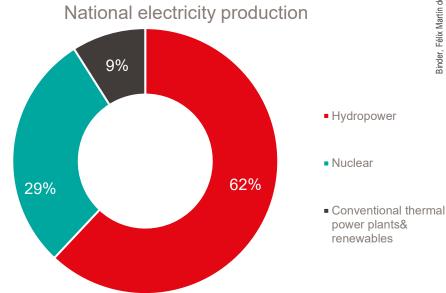
- Urban planning
- Energy planning
- Economic and environmental performance
- Development of industrial symbiosis and eco-industrial parks
- Closing material loops and circular economy
- Pollution control
- Material and energy supply security

MFA in practice – Applications (recap)

- Early detection of harmful/useful material accumulation or depletion in anthropogenic/natural subsystems.
- Prediction of future quantities in anthropogenic/natural subsystems.
- Identification of the need for action in the areas of environmental, resource, waste and policy management.
- Evaluation of the effectiveness of current/planned measures.
- Design of ecologically-optimized products, processes and systems (e.g. green design, eco-design, circularity).

Case study: The energy transition in the Swiss context


 Laboratory on Human-Environment Relations in Urban Systems


The issue at hand: The Swiss Energy Strategy

« The science is clear: to ensure sufficiently high probability of global warming remaining below 1.5°, global CO₂ emissions must be reduced to net zero by the middle of this century at the latest »

- Federal Council

- Increase energy efficiency (buildings, mobility, industry, etc.)
- Develop renewable energies (promotion, ease the legal framework, etc.)
- Phase out nuclear energy (no more construction of nuclear power plants, security concerns, etc.)

Observations

- Long-term goal: Net-zero GHG by 2050
- Intermediate goal: 50% reduction by 2030 based on 1990 levels
- To achieve the Swiss energy strategy goals:
 - Need to replace 70% of current energy consumption by renewables
 - Increase national production (also to reduce foreing dependency)

- Reduction in GHG emissions → increase in renewable energies
- Increase in renewable energies → increase in materials required to manufacture renewable energy technologies (including critical raw materials)

Observations

- Long-term goal: Net-zero GHG by 2050
- Intermediate goal: 50% reduction by 2030 based on 1990 levels
- However, no mention of:
 - Material requirements
 - Material depletion
 - Material impacts
 - Supply chain
- Focus is on GHG emissions and how to reduce them

How could MFA help in this situation? What would be your approach?

The Swiss Energy Transition

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Master's Degree in Environmental Sciences and Engineering

Master Thesis

Critical Raw Materials (CRMs) in the Context of the Energy Transition and Beyond

(Considering Time, Space, and Geopolitics)

EPFL

Supervisor:
Prof. Claudia Binder
Cosupervisors:
Prof. Silvia Fiore
Dr. Francisco Xavier Félix Martín del Campo

Spring Semester 2024

Candidate:

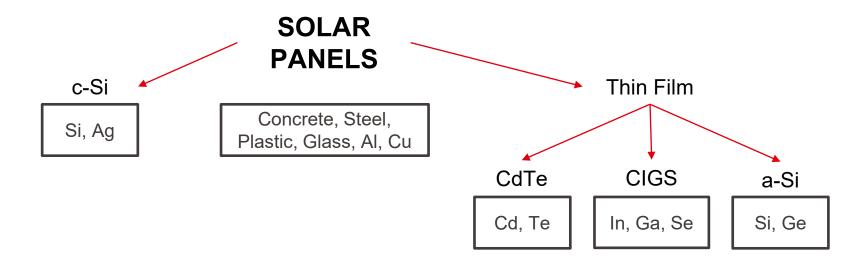
Matilde Spinello

Human-Environment Relations in Urban Systems **EPFL** SIE individual project Circular economy strategies for the renewable energy transition in Switzerland Supervisors Author Léa Bitard Ankita Singhyi lea.bitard@epfl.ch Prof. Claudia R. Binder 05.02.2024 HERUS - Human-Environment Relations in Urban Systems

- Studies focused on renewable energy technologies:
 - Solar panels
 - Wind turbines
 - Electric vehicles (EV)
- Steps:
 - Determine the type/amount of materials needed to manufacture each technology
 - Assess the total number of solar panels, wind turbines and EV's necessary for the energy transition
 - Estimate total quantity of materials

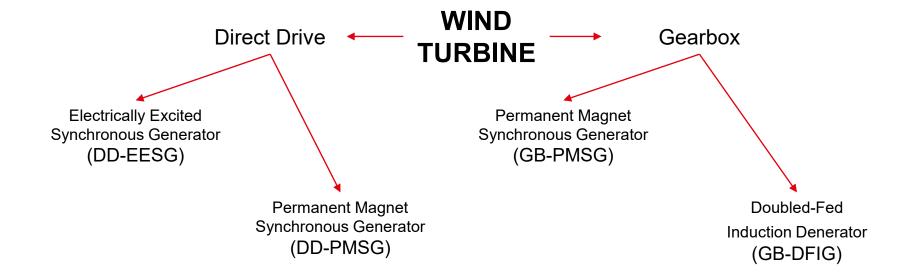
Source: HERUS Laboratory, 2024

Critical raw materials (CRMs)

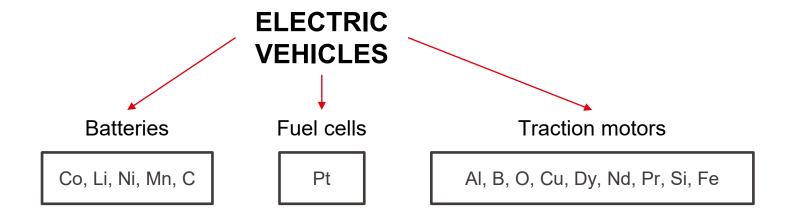

 Definition of the European Commission: "Those raw materials that are most important economically and have a high supply risk are called critical raw materials. Critical raw materials are essential to the functioning and integrity of a wide range of industrial ecosystems"

2020 Critical Raw Materials (new as compared to 2017 in bold)										
Antimony	Hafnium	Phosphorus								
Baryte	Heavy Rare Earth Elements	Scandium								
Beryllium	Light Rare Earth Elements	Silicon metal								
Bismuth	Indium	Tantalum								
Borate	Magnesium	Tungsten								
Cobalt	Natural Graphite	Vanadium								
Coking Coal	Natural Rubber	Bauxite								
Fluorspar	Niobium	Lithium								
Gallium	Platinum Group Metals	Titanium								
Germanium	Phosphate rock	Strontium								

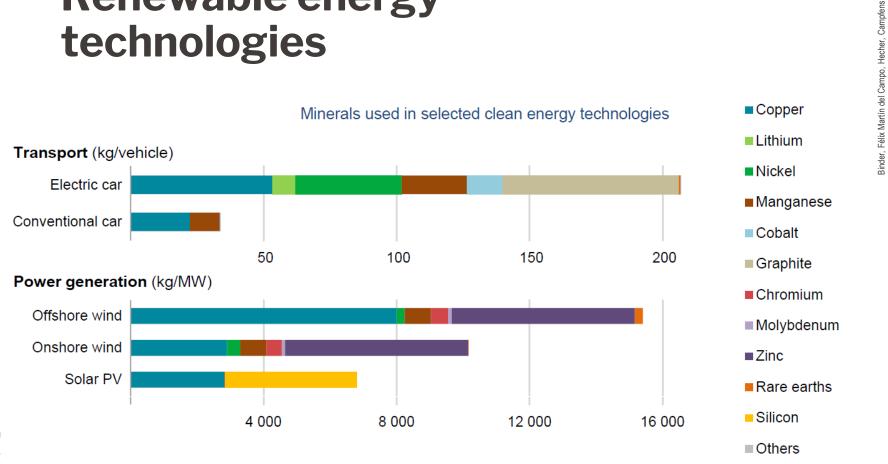
 Laboratory on Human-Environment Relations in Urban Systems


Source: European Commission (2020)

Renewable energy technologies - Solar


Laboratory on Human-Environment Relations in Urban Systems Concrete, steel, plastic, glass, Si, Ag, Al, Cu, Cd, Te, In, Ga, Se, Ge...

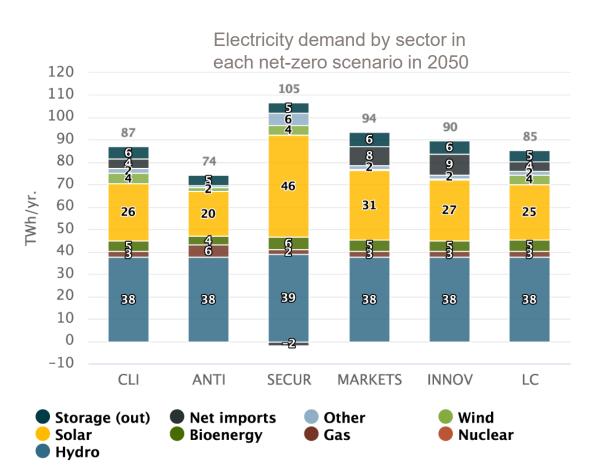
Renewable energy technologies - Wind


Laboratory on Human-Environment Relations in Urban Systems Steel, Plastic, Glass, Al, B, Cr, Dy, Fe, Mn, Mo, Nd, Ni, Pr, Tb, Zn...

Renewable energy technologies – E-mobility

 Laboratory on Human-Environment Relations in Urban Systems Co, Li, Ni, Mn, C, Pt, Al, B, O, Cu, Dy, Nd, Pr, Si, Fe...

Renewable energy technologies


The Swiss Energy Transition

_	IC 3WISS E	liergy Fransition
Scenario	Description	Switzerland in 2050
CLI	Full implementation of the energy agreements	 Environmental policies and practices put in place. Energy demand reduced in end-hand sectors. European level CO₂ grids.
ANTI	Low international cooperation in mitigating climate change	 -Limited technological progress leads to high capital costs for low carbon solutions. - Development at local scales (high willingness to pay, local energy networks & self-sufficiency)
SECUR	International trade is controlled for energy carriers	-Restricted access to energy resources leads to an increase in energy import prices. - Domestic renewable energies exploited at their maximum potential. - Annual net energy imports as close to 0 as possible.
MARKETS	High global cooperation	-Increased availability of imported resources leads to more affordable energy -Development of local energy markets in coordination with national ones.
INNOV	Variant of MARKETS with closer international cooperation	-Increased R&D expenditures lead to low-carbon energies costs reduction.
LC	Least cost variant of the CLI scenarios	-Resource potentials are set to the levels of CLI.

Laborat Human-Environ Relations in Urban Systems

Source: Panos et al, 2023, HERUS Laboratory, 2024

The Swiss Energy Transition

 Laboratory on Human-Environment Relations in Urban Systems

Source: Panos et al, 2023

The Swiss Energy Transition

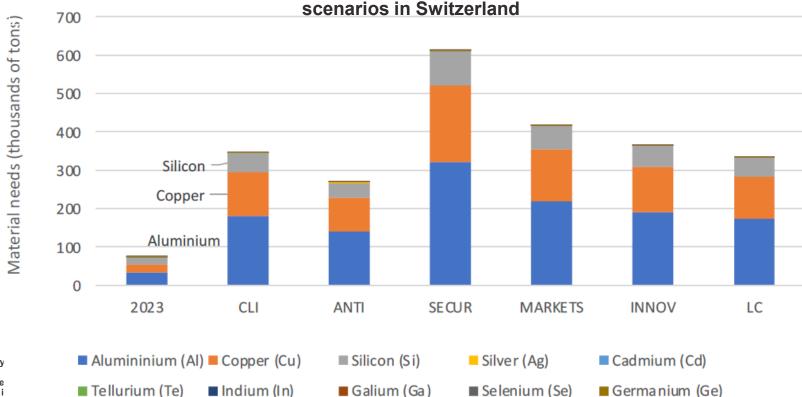
Forecasted installed capacities to 2050

	CLI	ANTI	SECUR	MARKETS	INNOV	LC	TARGET*
Solar panels (GW)	26.8	20.8	47.4	32.4	28.2	28.2	37.5
Wind turbines (GW)	2.6	1.0	2.6	0.1	0.1	0.1	2.2
EV (millions of vehicles)	4.8	4.6	3.5	4.9	5.3	5.3	N.A.

EPFL

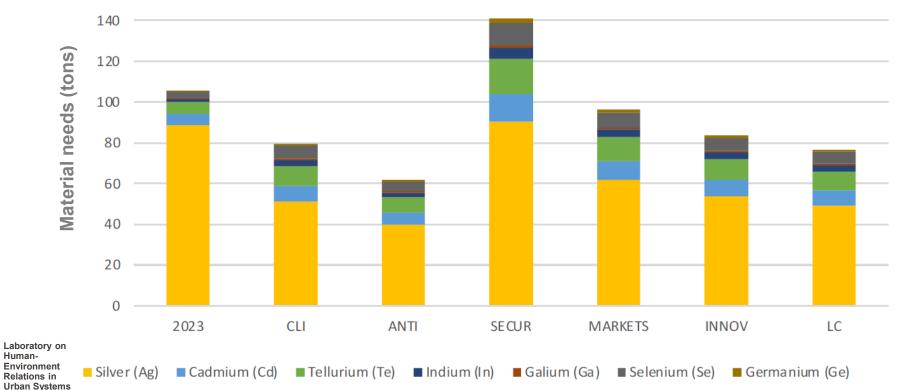
The Swiss Energy Transition

	Photovoltaic solar panels															
	All technologies						c-	Si	Cd	lTe	CIGS			a-Si		
	Concrete	Steel	Plastic	Glass	Al	Cu	Si	Ag	Cd	Te	Cu	In	Ga	Se	Si	Ge
	(t/MW)	(t/MW)	(t/MW)	(t/MW)	(t/MW)	(t/MW)	(t/MW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)
2010							7.0	84.0	116.0	132.0	25.3	43.0	11.0	107.0	163.0	73.0
2018	1						4.0	20.0	85.0	95.0	24.0		60.0	150.0	48.0	
2020	60.7	67.9	8.6	46.4	7.5	4.6	3.9	18.0	77.0	87.0	23.0		51.0	145.0	48.0	
2030	00.7	67.9	6.0	40.4	1.5	4.0	3.5	11.0	60.0	70.0	17.5	17.0	4.5	40.0	130.0	32.0
2040	1						3.5	6.0	44.0	50.0	16.2	12.0	3.0	25.0	120.0	24.0
2050							3.0	5.0	35.0	40.0	15	10.0	2.5	20.0	110.0	20.0


	Wind turbines																
	Concrete	Steel	Polymers	Glass	Al	В	Cr	Cu	Dy	Fe	Mn	Мо	Nd	Ni	Pr	Tb	Zn
	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)	(t/GW)
DD-EESG	369000	132000	4600	8100	700	0	525	5000	6	20100	790	109	28	340	9	1	5500
DD-PMSG	243000	119500	4600	8100	500	6	525	3000	17	20100	790	109	180	240	35	7	5500
GB-PMSG	413000	107000	4600	8400	1600	1	580	950	6	10800	800	119	51	440	4	1	5500
GB-DFIG	355000	113000	4600	7700	1400	0	470	1400	2	18000	780	99	12	430	0	0	5500

 Laboratory on Human-Environment Relations in Urban Systems

Source: HERUS Laboratory, 2024


Technology: Solar

Current (2023) and 2050 raw material requirements for Solar Panels in different scenarios in Switzerland

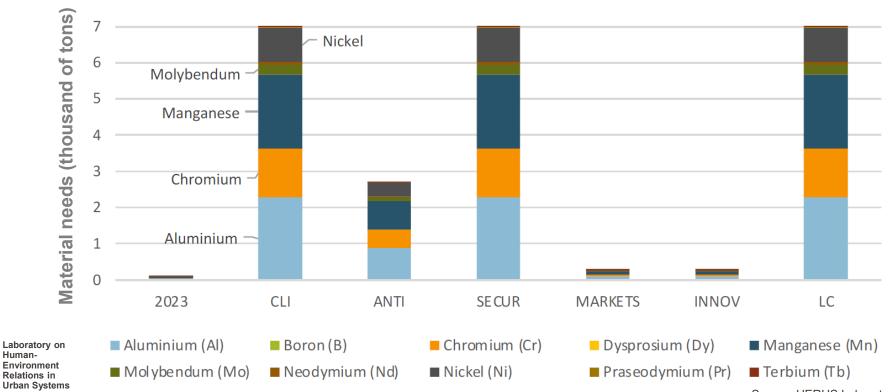
Technology: Solar


Current (2023) and 2050 raw material requirements for Solar Panels in different scenarios in Switzerland

Source: HERUS Laboratory, 2024

Technology: Wind

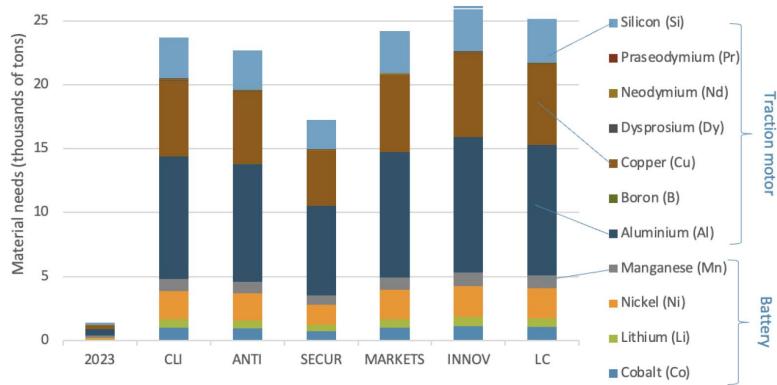
Current (2030) and 2050 raw material requirements for Wind Turbines in different scenarios in Switzerland



 Laboratory on Human-Environment Relations in Urban Systems

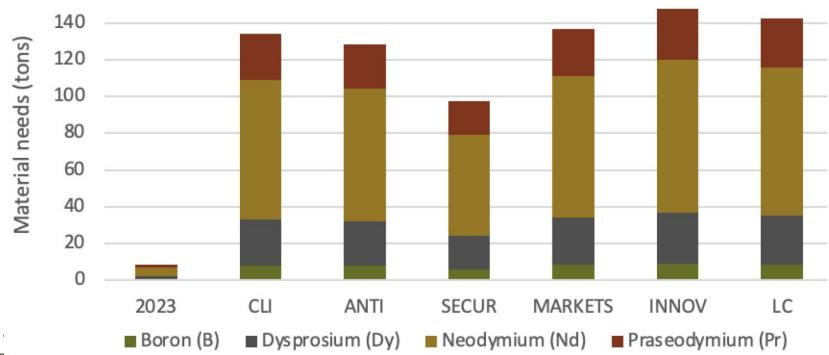
Source: HERUS Laboratory, 2024

Technology: Wind


Current (2030) and 2050 raw material requirements for Wind Turbines in different scenarios in Switzerland

Urban Systems Source: HERUS Laboratory, 2024

Technology: E-mobility

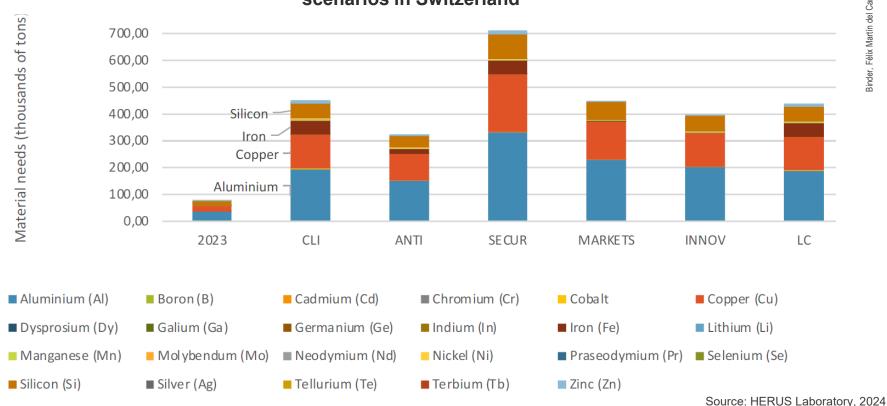

Current (2030) and 2050 raw material requirements for Electric Vehicles in different scenarios in Switzerland

Source: HERUS Laboratory, 2024

Technology: E-mobility

Current (2030) and 2050 raw material requirements for Electric Vehicles in different scenarios in Switzerland

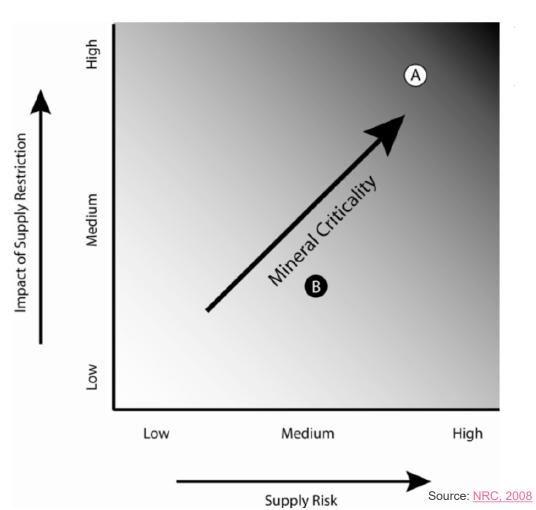
Source: HERUS Laboratory, 2024


Laborato

Human-Environn

Urban Sy

All 3 technologies


Current (2030) and 2050 raw material requirements for All three technologies in different scenarios in Switzerland

EPFL

The criticality matrix

- The vertical axis embodies the idea of importance in use and represents the impact of supply restriction
- The horizontal axis embodies the concept of availability and represents supply risk

Laboratory on Human-Environment Relations in Urban Systems

The criticality matrix: Dimensions

National Research Council – 2008: Scale from 1 to 4

Importance

- Substitution: Some nonfuel minerals or materials are more important in use than others
- Importance is Low: if substitution of one mineral for another in a product is easy technically, or relatively inexpensive
- Importance is High: if substitution is difficult technically or is very costly, as would be the cost or impact of a restriction in its supply

Laboratory on Human-Environment Relations in Urban Systems This concept of **importance** at a product level significantly includes the net **benefits** customers receive from using a product

Source: NRC, 2008

National Research Council – 2008: Scale from 1 to 4

Availability and Supply Risk

- Geological: Does the mineral exist?
- Technical: Do we know how to extract and process it?
- Social and environmental: can we extract and process it with a level of environmental damage that society considers acceptable and with effects on local communities and regions that society considers appropriate?
- Political: how do policies affect availability both positively and negatively?
- **Economic**: can we produce a mineral or mineral product at costs consumers are willing and able to pay?

 Laboratory on Human-Environment Relations in Urban Systems

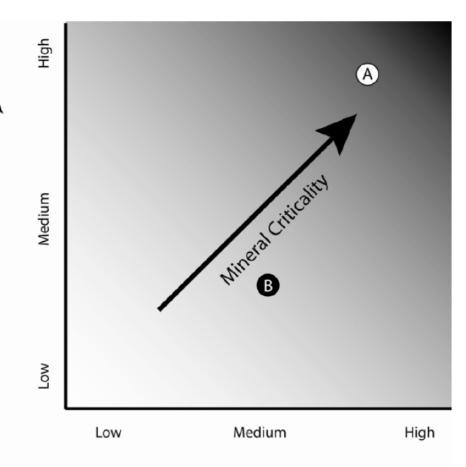
Source: NRC, 2008

Source: US DOE, 2023

EPFL

The criticality matrix: Dimensions

energy


Importance to

US Department of Energy 2023:

Addresses particular concerns for energy technologies

"Importance to energy" and "supply risk"

- Weighted averages of several factors
- Score from 1 to 4

Supply Risk

Laboratory on Human-Environment Relations in Urban Systems

The criticality matrix: Dimensions

US Department of Energy - 2023 : Scale from 1 to 4

Importance to energy

- Energy Demand: importance of both materials and the technologies that use them to the future of energy, including technologies that produce, transmit, store, and conserve energy
- Substitutability Limitations: ability to reduce the use of the material in energy applications through material substitution or substitutions in the energy system itself

Source: US DOE, 2023

The criticality matrix: Dimensions

US Department of Energy - 2023 : Scale from 1 to 4

Availability and Supply Risk

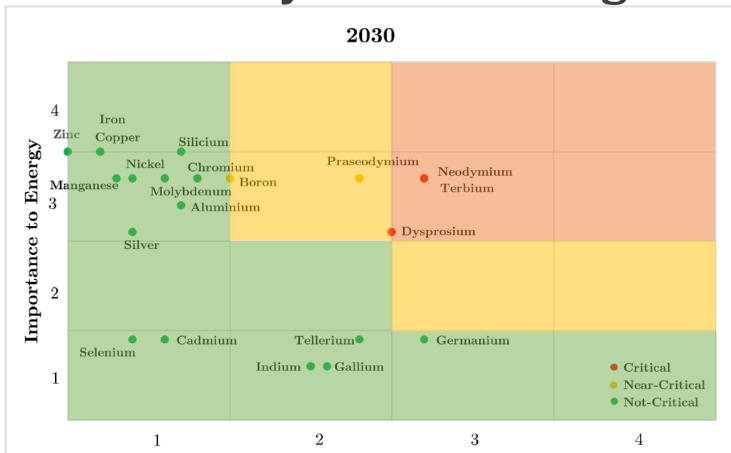
- Basic availability: extent to which global supply (including recycling) will be able to meet demand
- Recycling rates: recycling rate of materials from solar/wind
- Political, regulatory, and social factors: assesses supply risks associated with trends in demand from non-energy sectors through the World Governance Indicators (WGIs)
- **Environmental factors**: Environmental performance index (EPI), measuring the environmental performance of a state's policies
- Co-dependence on other markets: reliance of a material on the production of other products
- Producer diversity: market concentration and the ability of producing countries to exert market power over a particular material market

 Laboratory on Human-Environment Relations in Urban Systems

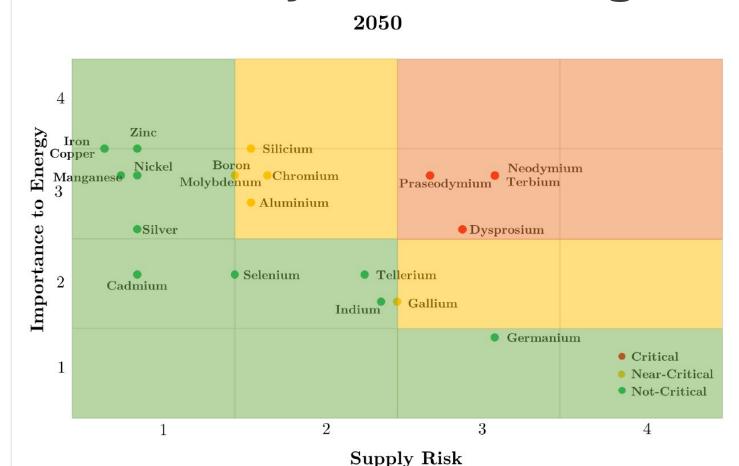
Source: adapted from US DOE, 2023

EPFL

The criticality matrix: Scoring metrics Factor


		Name	Weight	1	2	3	4	
Compound Annual Growth Rate (CAGR) -	_			Market share of the	Market share of the	Market share of the	Market share of the	
mean annual growth rate	Importance	Energy Demand	0.7	most dominant specific	most dominant specific	most dominant	most dominant	
of an investment over a	to Energy			sub-technology <10% Perfect or near-perfect	sub-technology ≥10%	sub-technology ≥25%	sub-technology ≥50%	
specified period of time longer than one year		Substitutability Limitations	0.3	substitutes are available at material and system levels with little to no limitations	Substitutes are available at either material or system levels with minor limitations or concerns.	Substitutes are available at either material or system levels with major limitations or concerns.	No substitutes are available at either the material or system levels.	
Herfindahl-Hirschman				or concerns. No concerns about	Minor concerns about	Maine	Grave concerns about	
Index (HHI) - measure of the size of firms in relation to the industry. Used as indicator of the		Basic Availability	0.4	No concerns about existing capacity to meet medium/long term demand.	existing capacity to meet medium/long term demand.	Major concerns about existing capacity to meet medium/long term demand.	existing capacity to meet medium/long term demand.	
amount of competition among them	Supply Risk	Recycling Rate	0.1	The recycling rate of the material from its energy application is from 75 to 100%.	The recycling rate of the material from its energy application is from 50 to 75%.	The recycling rate of the material from its energy application is from 25 to 50%.	The recycling rate of the material from its energy application is from 0 to 25%.	
Environmental Performance Index (EPI) - the environmental		Political, Regulatory, and Social Factors	0.1	WGI < 3	$3 \leq \text{WGI} \leq 4.5$	$4.5 \le \text{WGI} \le 6$	WGI > 6	
performance of a state's policies		Environmental Factors	0.1	EPI > 60	$45 \le \text{EPI} \le 60$	$30 \le \text{EPI} \le 45$	EPI < 30	
World Governance Indicator (WGI) - assesses supply risks		Co-dependence on Other Markets	0.1	May or may not be produced as a co- product of other metals.	Most (>50%) production is as co-product or as a by-product of other metals.	Significant (>75%) production is as co-product or as a by-product of other metals.	100% production is as co-product or as a by-product of other metals.	
 Laboratory on Human- Environment Relations in 				Produced as a main product in most circumstances.	Produced as a main product in some circumstances OR there is excess by-product supply in the market.	May be produced as a main product in some circumstances AND there is no excess by-product supply in the market.	Not produced as a main product anywhere in the world AND there is no excess by-product supply in the market.	Source: HERUS laboratory, 2024, adapted from US
Urban Systems		Producer Diversity	0.2	HHI < 2500	$2500 \leq \mathrm{HHI} \leq 3332$	$3333 \leq \mathrm{HHI} \leq 4999$	HHI ≥ 5000	DOE, 2023

The criticality matrix: Scoring metrics


F	Factor	Metrics			Score			Final Score
		Name	Weight	1	2	3	4	C
Importance to Energy		Energy Demand	0.7	Market share of most dominant sub-tech <10%	>=10%	>=25%	>=50%	
	Energy	Substitutability Limitations	0.3	Perfect or near perfect substitutes are available at material and system levels with little to no limitations or	Substitutes are available at either material or system levels with minor limitations or concerns.	Substitutes are available either at the material level or systems level with major limitations or	No substitutes are available at either the material or system levels.	3.4
Example of A	luminiu	n Basic Availability	0.4	No concern about existing capacity to meet medium-long- term demands	Minor concern about existing capacity to meet medium-long term demands	Major concern about existing capacity to meet medium-long-term demands	Grave concern about existing capacity to meet medium-long-term demands	
ample or		Recycling rates (from technology)	0.1	75-100%	50-75%	25-50%	0-25%	
EXC		Political Regulatory, and Social Factors	0.1	WGI<3	3-4.5	4.5-6	>6	
Sup	oply Risk	Countries environment impact	0.1	EPI>60	45-60	30-45	<30	1.6
				May or may not be produced as a co-product of other	Most (>50%) prod is as a co/by-product of other	Significant (>75%) prod is as a co/by-product of other	100% prod is as a co/by- product of other	
Compound Herfindahl-l · Laboratory o		Co-dependence on other markets	0.1	Produced as a main product in most circumstances	Produced as a main product in some circumstances (or there is by product supply in the market)	ALCOHOL: NAME OF STREET OF STREET OF STREET OF STREET	Not produced as a main product in anywhere and there is no excess by product supply in the market	
Human- Environment Relations in		Producer diversity	0.2	HHI<2500	2500-3332	3333-4999	>=5000	

Source: adapted from US DOE, 2023

EPFL

The criticality matrix: Scoring metrics

Laboratory on Human-Environment Relations in Urban Systems

Source: HERUS Laboratory, 2024

> Laboratory on Human-Environment Relations in **Urban Systems**

New list of critical raw materials

					Campfe
			SV	VITZERLAND	
			Critical	Near-Critical	Not-Critical
2020	Critical Raw Materials (new as compare	d to 2017 in bold)	Aluminium (Al)	Cadmium (Cd)	/
Antimony	Hafnium	Phosphorus	Boron (B)	Copper (Cu)	
Baryte Beryllium	Heavy Rare Earth Elements Light Rare Earth Elements	Scandium Silicon metal	Chromium (Cr)	Germanium (Ge)	
Bismuth	<u>Indium</u>	Tantalum	Dysprosium (Dy)	Indium (In)	
Borate	Magnesium	Tungsten	Gallium (Ga)	Iron (Fe)	
Cobalt Coking Coal	Natural Graphite Natural Rubber	Vanadium Bauxite	Molybdenum (Mo)	Manganese (Mn)	
Fluorspar Gallium	Niobium Platinum Group Metals	Lithium Titanium	Neodymium (Nd)	Nickel (Ni)	
Germanium	Phosphate rock	Strontium	Praseodymium (Pr)	Selenium (Se)	
			Silicium (Si)	Silver (Ag)	
			Terbium (Tb)	Tellurium (Te)	
 Laboratory on Human- Environment 				Zinc (Zn)	

Source: European Commission (2020); HERUS Laboratory, 2024

Thank you for your attention!

 Laboratory on Human-Environment Relations in Urban Systems